RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2016 SECOND YEAR [BATCH 2015-18] MATHEMATICS FOR ECONOMICS [General]

Date : 23/12/2016 Time : 11 am - 2 pm

Paper : III

Full Marks : 75

[Use a separate Answer Book for each group]

$\underline{Group} - \underline{A}$

Answer <u>any four</u> questions from <u>Question No. 1 to 6</u> :			[4×5]	
1.	a) b)	State and prove Euler's theorem on homogeneous function for two variables. Verify this theorem for the function: $u = sin(xy)$.	[1+1] [3]	
2.	a)	Define the Jacobian of some <i>n</i> variable functions u_1, u_2, \dots, u_n with respect to the variables		
		x_1, x_2, \cdots, x_n .	[2]	
	b)	Check whether the functions $u = x + y + z$, $v = xy + yz + zx$, $w = xyz$ are functionally related not? If related then find the relation.	d or [3]	
3.	a)	Define stationary point of a function of two variable.	[1]	
	b)	Show that $xy + \frac{8}{x} + \frac{8}{y}$ attains minimum value 12 at (2,2).	[4]	
4.	Exa	amine the convergence of $\int_{a}^{b} (x-a)^{-\frac{1}{2}} (b-x)^{-3} dx.$	[5]	
5.	a)	State the fundamental theorem of integral calculus.	[2]	
	b)	Using the relation between Beta and Gamma function show that, $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx = \frac{3\pi}{128}.$	[3]	
6.	a) b)	Define convexity and concavity of a function at a point. Find the points of inflexion, if any of the curves	[1+1]	
		(i) $y = \frac{x^3}{a^2 + x^2}$		
		(ii) $x = (\log y)^3$	[11/2+11/2]	
Answer <u>any two</u> questions from <u>Question No. 7 to 9</u> : [2×10]				
7.	a)	Show that for the function		
		$f(x, y) = x^{2} \tan^{-1}\left(\frac{y}{x}\right) - y^{2} \tan^{-1}\left(\frac{x}{y}\right)$		
		f(0, y) = f(x, 0) = 0	F < 1	
		$f_{xy} = f_{yx}$ at all points except (0,0).	[6]	
		$\int_{c}^{\pi/2} x dx \qquad \pi$		

b) Show that
$$\int_{0}^{2} \frac{x \, dx}{\sin x + \cos x} = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1)$$
. [4]

8. a) Use the Lagrange's method of undetermined multipliers to find the minimum value of $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = p. [6]

b) Examine the convergence of
$$\int_{0}^{1} \frac{x^{n-1}}{1-x} dx$$
. [4]

- a) Prove that if f(x, y) is differentiable at (a, b), it is continuous there. 9.
 - b) Is the converse of the above 9(a) is always true? Justify.
 - Show that $f(x, y) = \sqrt{|xy|}$ is not differentiable at (0, 0). c)

Group – **B**

Answer any seven questions from Question No. 10 to 20:

[7×5]

[3]

[3]

[4]

Find the differential equation of all circles of radius 'a' whose centres lie upon the y-axis. 10. a) [3] Find the order and degree of the following differential equation: b)

$$\left(\frac{dy}{dx}\right)^4 + 4\frac{d^2y}{dx^2} + \left(\frac{d^3y}{dx^3}\right)^2 = 0.$$
[2]

12. Reduce the differential equation
$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$
 to homogeneous form and then solve it. [5]

- State the necessary and sufficient condition for a differential equation of first order and first 13. a) [2] degree to be exact.
 - b) Check whether $(\cos y + y \cos x)dx + (\sin x x \sin y)dy = 0$ is an exact differential equation or not? Hence solve it. [3]
- $\frac{1}{3x^3y^3}$ is an integrating 14. Prove that factor of the differential equation $y(xy+2x^2y^2)dx+x(xy-x^2y^2)dy=0$ also solve it. [2+3]

15. Solve:
$$(4x^2y - 6)dx + x^3dy = 0.$$
 [5]

Define the Clairaut's form of a differential equation. 16. a)

b) Solve $y = px + \sqrt{a^2 p^2 + b^2}$ where 'a' and 'b' are constants and $p = \frac{dy}{dx}$. Also find the singular solution of the differential equation.

17. Solve the differential equation
$$\frac{d^2x}{dt^2} + n^2x = 0$$
 when $t = 0$, $\frac{dx}{dt} = 0$ and $x = 0$. [5]

18. Solve:
$$\frac{d^2 y}{dx^2} + y = 1 + 4x + 3x^2$$
. [5]

19. Solve the differential equation
$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} = 2x^2 + 1$$
 by the method of undetermined coefficient. [5]

20. Solve the differential equation
$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$
 by the method of variation of parameters. [5]

Х-

[2+2]

[1]